发布网友 发布时间:2024-12-18 04:15
共1个回答
热心网友 时间:2024-12-24 12:58
设AC:y=kx,
代入椭圆 :(x^2)/2+y^2=1得
(2k^2+1)x^2=2,
x^2=2/(2k^2+1),
|x|=√[2/(2k^2+1)],
|OA|=|x|√(1+k^2)=√[2(k^2+1)/(2k^2+1)],
以-1/k代k,得|OB|=√[2(1/k^2+1)/(2/k^2+1)]
=√[2(1+k^2)/(2+k^2)],
菱形ABCD的面积=2|OA|*|OB|=4(K^2+1)/√[(2k^2+1)(k^2+2)].
可以吗?