发布网友 发布时间:2024-10-24 17:35
共1个回答
热心网友 时间:2024-11-04 12:44
lim(1-cosx)/x^2(x趋于0)=1/2。
解答过程如下:
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中。
逐渐向某一个确定的数值A不断地*近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
扩展资料:
极限的求法有很多种:
(1)连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
(2)利用恒等变形消去零因子(针对于0/0型)。
(3)利用无穷大与无穷小的关系求极限。
(4)利用无穷小的性质求极限。
(5)利用等价无穷小替换求极限,可以将原式化简计算。
(6)利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹*定理的方法求极限。
当x→0时,等价无穷小:
(1)sinx~x
(2)tanx~x
(3)arcsinx~x
(4)arctanx~x
(5)1-cosx~1/2x^2
(6)a^x-1~xlna
(7)e^x-1~x
(8)ln(1+x)~x
(9)(1+Bx)^a-1~aBx
(10)[(1+x)^1/n]-1~1/nx
(11)loga(1+x)~x/lna