排列组合cn和an公式?

发布网友 发布时间:2022-04-23 03:54

我来回答

3个回答

热心网友 时间:2023-07-07 13:27

排列的公式:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。

例如:A(4,2)=4!/2!=4*3=12。

组合的公式:C(n,m)=P(n,m)/P(m,m) =n!/m!*(n-m)!。

例如:C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。

加法原理和分类计数法

1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

3、分类的要求 :每一类中的每一种方法都可以地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

热心网友 时间:2023-07-07 13:27

排列的公式:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。

例如:A(4,2)=4!/2!=4*3=12。

组合的公式:C(n,m)=P(n,m)/P(m,m) =n!/m!*(n-m)!。

例如:C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。

扩展资料:

做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m*n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

每一类中的每一种方法都可以地完成此任务;两类不同办法中的具体方法,互不相同即分类不重;完成此任务的任何一种方法,都属于某一类即分类不漏。

排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。

参考资料来源:百度百科-排列组合(组合数学中的一种)

热心网友 时间:2023-07-07 13:28

06220
76258
51472
74529

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com